ONE-DIMENSIONAL CONVECTIVE HEATING WITH A
TIME-DEPENDENT HEAT-TRANSFER COEFFICIENT

Yu. S. Postol'nik UDC 536.212

The problem of the symmetric convective heating of a plate, cylinder, and sphere with a
time-dependent heat-transfer coefficient is solved by the method of averaging functional
corrections.

The analytic study of the convective heating process with a time-varying heat-transfer coefficient
requires the solution of the Fourier equation

or _a 90 [m 0T , (1)
of " Ox Ox

describing the symmetric heating of a plate (m = 0), cylinder (m =1), or sphere (m = 2) with a boundary
condition of the third kind corresponding to Newton's law
or

e
dx

Il O [T,— T 0] (2)

1t is assumed that the coefficients « and A, the ambient temperature T4, and the initial temperature Tj are
constants: :

T(x, 0) =T, = const. &)

We shall stipulate a second boundary condition later. If we introduce the dimensionless variables

§=%; r=—;~i—=Fo; Bi(r)=i(gf—; o
0(E 7 = T 0
a
and, following [1], the new function
u(E 9 =In[1—8( 7], (5)
Egs. (1)-(3) are transformed to
o _du m i‘i+(2£2; ©)
v 08 ' E 0t
du .
% o~ B K
u(g 0)y=1Iu(l —0,) =u, ®)

The term (8u/8¢)% of Eq. (6) is omitted in [1], thus restricting the discussion to thin bodies.
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In accord with the conventional [2] engineering model of the heating process we consider two succes-
sive stages: inertial (warming up of the body) and regular (heating over the whole cross section). The
problem is solved by the method of averaging functional corrections [3-5].

Inertial Heating (0 = 7 =< 7j). We assume that the temperature distributions at the boundary between
the heated and unheated zones are joined. In this case there must be added to Eq. (6) with initial condition
(8) and boundary condition (7) the joining conditions

u (E! T)|§=p(1) = uO’ (9)
ou
2 - (10)
0F fe=p(m
where
Mﬂ=%?: (11)

r(t) is the width of the unperturbed zone of the cross section of the body, i.e., the distance from the center
of the cross section to the front of the moving thermal perturbation. '

As in [4, 5] we set

0%,
e = h: (12)
where
1
- Oy (Ou )\ m Ou
o= | e a) % | ® 19)
- p(7)
Integrating (12) twice with respect to £ and using (9) and (10) we have
Bi
wlE 9=t — g (PO <3, (14)
From (7) we find
__Bi()
A =1 (15)

Substituting (14) and (15) into (13) and making a number of transformations we find the following dif-
ferential equation for the remaining unknown function p(7):

é%ﬂﬁ@[L—p@PH@BF@ﬂ—mﬁﬂ=6@r%DBMﬁ (16)

Here by analogy with [5] we have omitted the terms containing the factor p(7)1np(7).

Introducing the notation

g (®) =1 Bi(r) p(), (17)
B =1—p@), (18)

we rewrite Eq. (16) in the form
g ifﬁ +Bi(®) VBI@ g (1) =3 (m+ 1) Bi (V. (19)

Equation (19) is a special case of the well-known Abel's equation of the second kind [6].
Setting

g@m=v@@®+ DO(), (20)
@m:-@ﬁmm, (21)
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we obtain
[o(t) +@ ()] 0 (x) =3 (m + D Bi(), (22)

which, according to [6], cannot be integrated in closed form. We obtain an approximate solution of (22)
by setting theadditive function &(7) on the left-hand side of (22) equal to some average value &,. This is
admissible because of the transient nature of the inertial heating process.

In this case the Entegral of Eq. (22) is

2
—%—+®*v=3(m+l)jBi(r)dr+C. (23)

By using (20) and (17) Eq. (23) is reduced to the following expression for the depth of penetration
of the thermal perturbation

B () = ]/f_ﬁ(B’"hi(';—”_ [fBi@d+D), (24)
wherethe constant D is determined from the obvious initial condition
O =0 (25)
in each specific case the function Bi(7) is given. If we set Bi(r) = const in (24)
l—p@=p@=VEm+1Dr, (26)
which agrees with the results in [5].
Thus the problem of the inertial stage of the heating has been solved.

Returning to the original notation we can write finally

[1—86;,(& 7 = exp {__ Bi(7) B (v) [1_ 1— E}% (27)

1—8, 2 B ()

If we set £ =1 in (27) we obtain the surface temperature of the body
Bs () = 1—(1—86,) exp{—EL”z’”—‘)}. (28)

Introducing the idea of the Biot number for a heated layer with a time-varying thickness g(7)
B0 =220 _piwpe, (29)
Eq. (28) can be written in a form analogous to the cdrresponding formula of [5]:
015 () = 1 — (1 — B exp [ﬁé_ﬂ] . (30)

The duration of the first stage of the heating can be determined for any given Bi(r) by setting 7 = 7,
and B(rg) =1 in (24).

Regular Heating (19 = 7 < <). To investigate regular heating Eq. (6) must be solved with boundary
condition (7) and the condition for the symmetry of the heating

g_g = @31)
We set
‘fgj =, (32)

0
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Integrating (32) twice with respect to £ and using boundary conditions (7) and (31) we have

Bi (T)

4y (€, ) =ty (1) + (1-—-8. (34)

After substituting (34) into (33) and integrating we obtain the following differential equation for the
unknown function u,g(7):

Bi? (r)

%{%m+%ﬁmq — (m+ 1) Bi o), 35)

which has the solution

g (r):H—B%ﬂ — (m+1)Bi (r)}dr——;- Bi() 4 C, (36)

To

where the integration constant C is determined from the initial condition

g (59 =t (7) = ty— = 0L )

Setting 7 = 7 in (36) and using (37) we find
C=tp— 2, 38)

6
If we introduce the notation
T
o () = Bié‘*’) Bi (") S [ B123(T) — (m+ 1) Bi (T)] d, (39)
we obtain finally

uy (& ) =ty — ¢ (1) + —Bi—;i (1—8). (40)

Returning to the original notation we have
t%f?=up{¢m+&m(laﬂ. (41)

In heat engineering calculations one is generally interested in the temperatures of the surface of the
body and at the center of its cross section

B, (1) = 1 — (1 —0,) e, (42)
. o2
Bty =1—(1—8)e . (43)
Thus the problem posed has been solved for an arbitrary continuous time-varying heat-transfer

coefficient « (t).

Analysis of a number of papers devoted to the problem under study shows that in most of them the
simplest laws of variation of the heat-transfer coefficient have been assumed. Various methods have been
used: operational [7, 8, 11], variational [9], finite integral transforms [10], etc. All these methods lead
to expressions which are rather complicated for practical use.

Only in [1] is the problem under study illustrated with a numerical example. In the expression for
the Biot number

Bi (1) = Bi, — Bi;e—" (44)
it is assumed that

Bi, = 1.2, Bi, = 1.0. (45)
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TABLE 1. Temperature of the Surface 65(r) and in the Central
Plane 90(1') at Various Times 7

95(t) a Oc(t)

5 |5 & g ~15 |2 ~ 2

I R . st le Dk ks
T SS E Ee P & S8 SE R [T

T 0T, uﬁ: © o o+ of2 q;o @

g —lg o 822! I Elg 82 ol

S N6 = 1SR o £, y o |8 N o 28 Q % O o o

g OE Qo] o7 o (Erla dls T D o B
0,00 — | — 0,338 — — — | — o336 — —
0,05 | — | — |0,3755] — - — |'— {0,336 — —
010 | — | — |0.400] — — — | — o33 — —
015 | — | — lo,495] — — — & — o33l — —
0212 — | — {0,451, — — — 1 — |o.338] — —
0.50 |0,526|0,556|0.545| 5,83 | —3,49 |0,400|0,397|0,390| +0,83 | --2,56
100 |0.678|0,71410,680| —5.41 | —0,30 {0,53810,569|0,516| —5,80 | +-4,36
150 [0.76910.814]0,778| —5.75 | —1,16 |0,662|0,70210,6381 —6.00 | +3,78
200 10,847 |0.89810.848] —5,99 | 0,12 10,770 |0,815/0,738| —5,8! | 4,34
2’50 10.883|0.928]0,894| —5,00 | —1,23 10,833|0,878 0,814 —5,35 | 42,34
3.00 {0,92110.95410,925| —-3.62 { —0,43 |0,878(0,92810,868: —5,68 | 1,10
350 10,947[0,976]0,948] —3,15 | —0,11 |0,917|0,956]0,907| —4,18 | +1,10
400 |0,964]0,990]0,964| —2,71 0,00 [0,944/0.,982(0.935] —4.04 | --0,96
450 | — | — |0975] — - — | = |oos! - -~
500 | — | — |0,98] — — — | — o068 — -

Only the regular heating of a plate is considered, with the initial relative temperature
8, = 0.336. (46)

Using the variation of the Biot number given in (44) and the numerical values from (45) and 46) we
determine the temperature of the surface 04(7) and in the central plane 6c(7) of a plate and compare the re-
sults with data from [1] which in turn are compared with the more accurate solution obtained in [12] by the
finite difference method.

Substituting (44) into (24) gives

4 .\ Bi,t+Bi, [e"—1]
B (T) = V 6(m-+ 1) OBio—éile—f . (47)

Assuming that the duration of the inertial heating stages 7, is relatively short we expand exp (—7y) in
a power series and retain second-order terms T%{(k = 2)

. . %

e ozl—rgﬂ—~2—. (48)
Using the fact that B(r;) = 1 we obtain from @7)
T, [+ 2oy - yv—(1—

S AR R (49)

+ T() Y

where
Bi,

V=F B, (50)

O S
O B(m+1)

Equation (51) determines the duration of the inertial heating stage of a plate for o = const [5]. Analysis
of Eq. (49) shows that the inertial heating proceeds more slowly when the Biot number varies according to
(44) than when it is constant (r; > 7).

For a plate (m = 0) with numbers from (45) we have from (49)

T, = 0.212. (52)
We now calculate ¢(7). Substituting into (39), (44), 45), and (52) for m = 0 we obtain
@ (1) = 0.041 + 0.72t — 0.133¢~" - 0.167¢ 7. (53)
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The relative temperatures of the surface and the center of the cross section of the plate are now found from
Fgs. (28), (42), and (43) using 6, from (46). The results are given in Table 1 which also lists the results
from {1, 127.

A comparative analysis shows that the averaging of functional corrections, even in first approxima-
tion, is more successful than the procedure given in [1] in approximating the results of the finite dif-
ference method.

In addition the exceptional simplicity both of the working formulas and of the calculational procedure
itself from the practical point of view distinguishes our method from most other known methods which
lead to solutions in infinite series by using integral representations and special functions.

NOTATION
T(x, t) is the temperature of the body as a function of position and time;
Ty is the ambient temperature;
T, is the initial temperature of the body;
8¢, 1) =Tx, t)/ Ty is the relative temperature;
8g(T), 8c(7) are the relative temperatures of the surface and center of body;
£=x/R is the dimensionless coordinate;
T = at/R? is the dimensionless time;
2R is the thickness of plate or didmeter of cylinder or sphere;
Ty is the duration of inertial heating;
B(7) is the depth of heating zone;
a is the thermal diffusivity;
A is the thermal conductivity;
a(T) is the heat-transfer coefficient;
Bi(n) =a(MR/2 is the Biot number;
m is the form factor of body, equal to 0 for a plate, 1 for a cylinder, and 2 for a
sphere.
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